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1 Introduction

In this talk the results from single-particle Anderson Localization are applied to a non-
interacting fermionic many body system as a first step towards Many Body Localization.
We'll find that in the non-interacting case, we can still find approximately localized
eigenmodes that can be filled by fermions, much like electrons filling the orbitals of the
hydrogen atom.

In the end I would like to give an outlook on more general systems, where we allow
particles to interact.

2 Single Particle Anderson Results

Let us remember the single-particle Anderson setting and our main results from last week.
We have the typical Anderson Hamiltonian given as
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where { | x) } denotes the lattice basis. The first sum is the hopping term and the second
sum consists of an on-site potential vy and the typical random i.7.d. potential v, .
In that Basis the hamiltonian takes the following shape:
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We know that the eigenvectors of such a system are ’easy’. By easy we mean that their
overlap with the lattice basis vectors is exponentially supressed by a uniform localization
length ly and therefore only a few lattice basis vectors that are close to each other contribute
to any given eigenvector. Put precisely we find that

Ao Ve 3y, : |pr ()] < e~ lmrmdl/lo (3)

where |z — j| is the distance between lattice site zj and j.

Precisely speaking, this result only holds almost surely (for almost all { v, }) and only
for infinite dimensional systems, but as physicists we’ll assume that this also holds for
sufficiently large finite systems.

3 Non-Interacting Many Body System

3.1 Fermionic 1D Chain
We would like a 1D lattice of size L. Our Hilbert space is given by H = c2".



Let’s put together a small tool box for our endeavour:
We denote our vacuum state as ) = [000...0) and define fermionic creation and
annihilation operators f;r and f; acting on site j:

FI10) =10...01;0..) =: [1;) . (4)
We demand the usual properties:

o Anticommutator {f; , f;r} =0

. f}fj =: n; number operator on j-th site

( f; )2 = (f;)? =0 as we don’t want to allow for more than one particle on one site.
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Let’s write down our hamiltonian in this language, not allowing for interactions between
particles and quietly dropping the on-site potential vg, because it doesn’t fundamentally
affect our system:

Hyp==Y flafi+ 15+ > v, 114 (5)
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3.2 Eigenmodes of Hy

Our goal now is to diagonalize the hamiltonian and show that the eigenmodes are approxi-
mately local.

Let’s first rewrite the hamiltonian Hy; = fThf by collecting the creation and annihilation
operators in vectors.
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-1 vg + Uy —1 : f2
HNI:[f{r fQT z} 0
i 0 0 -1 wo+twe,| | fL |
i
=ftupu'r,

where D = diag()\;) and U is the usual unitary. We notice that while the f; still live in
(CQLX?L, the coefficient matrix h is only from ML*" and we are familiar with it’s shape,

because it is similar to the standard Anderson hamiltonian H 4.



We can now write

Hy; =t DF (6)
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So we see that the k-th entry is given by

fe = exli) fi (9)
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3.3 Approximate Locality

In order to show that the eigenmodes f}, are approximately local, we first need to introduce
a little bit of technique, because here the eigenmodes fj, are operators and we only have a
good idea of local wave functions so far.

Let’s talk about bases first. On any single site j we can define a basis { 1, f;, f;, f}fj } =
{'yjl», 7]2, 7]3, fy;l }, relabeling them as ’y} A general operator on our system can be written
as
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« J
where the product runs through all combinations of ’y;
We define an operator to be approzimately local <=
1A = Tx, (A)]| < el (11)

Here the reduction map I'x, maps an operator A to an operator Ax, that is only affecting
a sphere of size [ of our lattice X; C A, but is otherwise the same as A. Specifically this
means that
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Trying to find that the f; are approximately local, we plug in:
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Having estimated || f;|| < 1 from above.
Splitting and shifting the sums we can write
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We recognized the geometric series, which made this very simple. However, for any
dimension where ¢y, is local, we can find a respective constant ¢ as an upper bound to a

more complex polynomial in place of the geometric series.

4 Results & Outlook

We have shown that the non-interacting many body hamiltonian has approximately local

eigenmodes.

We can indeed think of this system the same way we think about the hydrogen atom:

as filling eigenmodes by consecutively putting electrons into them.



The non-interacting model hamiltonian
Hyr ==Y flafi+ i + S v, f1f;
J J
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however, has it’s limitations and we cannot generalize our results to systems where
fermion-fermion interaction is present.

Outlook

From the locality of the non-interacting eigenmodes fj, we can derive low entanglement,
that is not dependent on the size of the system. Instead of giving a rigorous proof, I'd like
to draw an intuitive picture.

While we have to give up local eigenmodes in a general system, entanglement is much
easier to measure. Therefore showing little entanglement is an indicator of many body
localization, but at this point a rigorous definition of many body localization has yet to be
found.



